
Page 1 of 7

Software metric

7.1 A software metric is a measure of some property of a piece of software or its

specifications. Since quantitative measurements are essential in all sciences, there

is a continuous effort by computer science practitioners and theoreticians to bring

similar approaches to software development. The goal is obtaining objective,

reproducible and quantifiable measurements, which may have numerous valuable

applications in schedule and budget planning, cost estimation, quality assurance

testing, software debugging, software performance optimization, and optimal

personnel task assignments.

Common software measurements

Common software measurements include:

 Balanced scorecard

 Bugs per line of code

 Code coverage

 Cohesion

 Comment density[1]

 Connascent software components

 Coupling

 Cyclomatic complexity (McCabe's complexity)

 DSQI (design structure quality index)

 Function point analysis

 Halstead Complexity

 Instruction path length

 Number of classes and interfaces

 Number of lines of code

 Number of lines of customer requirements

 Program execution time

 Program load time

 Program size (binary)

 Robert Cecil Martin's software package metrics

 Weighted Micro Function Points

 Function Points and Automated Function Points, an Object Management

Group standard[2]

 CISQ automated quality characteristics measures

Limitations

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Balanced_scorecard
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Cohesion_(computer_science)
http://en.wikipedia.org/wiki/Software_metric#cite_note-1
http://en.wikipedia.org/wiki/Connascent_software_components
http://en.wikipedia.org/wiki/Coupling_(computer_science)
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/DSQI
http://en.wikipedia.org/wiki/Function_point_analysis
http://en.wikipedia.org/wiki/Halstead_complexity_measures
http://en.wikipedia.org/wiki/Instruction_path_length
http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Loader_(computing)
http://en.wikipedia.org/wiki/Binary_file
http://en.wikipedia.org/wiki/Robert_Cecil_Martin
http://en.wikipedia.org/wiki/Weighted_Micro_Function_Points
http://en.wikipedia.org/wiki/Function_Point
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Software_metric#cite_note-2
http://en.wikipedia.org/wiki/CISQ
http://en.wikipedia.org/wiki/Software_quality#CISQ.27s_Quality_model

Page 2 of 7

As software development is a complex process, with high variance on both

methodologies and objectives, it is difficult to define or measure software qualities

and quantities and to determine a valid and concurrent measurement metric,

especially when making such a prediction prior to the detail design. Another source

of difficulty and debate is in determining which metrics matter, and what they

mean.[3][4] The practical utility of software measurements has thus been limited to

narrow domains where they include:

 Schedule

 Size/Complexity

 Cost

 Quality

Common goal of measurement may target one or more of the above aspects, or the

balance between them as indicator of team’s motivation or project performance.

Acceptance and public opinion

Some software development practitioners point out that simplistic measurements

can cause more harm than good.[5] Others have noted that metrics have become an

integral part of the software development process.[3] Impact of measurement on

programmers psychology have raised concerns for harmful effects to performance

due to stress, performance anxiety, and attempts to cheat the metrics, while others

find it to have positive impact on developers value towards their own work, and

prevent them being undervalued.[6] Some argue that the definition of many

measurement methodologies are imprecise, and consequently it is often unclear

how tools for computing them arrive at a particular result,[7] while others argue that

imperfect quantification is better than none (“You can’t control what you can't

measure.”).[8] Evidence shows that software metrics are being widely used by

government agencies, the US military, NASA,[9] IT consultants, academic

institutions,[10] and commercial and academic development estimation software.

7.2 Software package metrics

The term software package, as it is used here, refers to a group of related classes

(in the field of object-oriented programming).

 Number of Classes and Interfaces: The number of concrete and abstract

classes (and interfaces) in the package is an indicator of the extensibility of

the package.

http://en.wikipedia.org/wiki/Software_metric#cite_note-integration_watch-3
http://en.wikipedia.org/wiki/Software_metric#cite_note-integration_watch-3
http://en.wikipedia.org/wiki/Cost
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Software_metric#cite_note-5
http://en.wikipedia.org/wiki/Software_metric#cite_note-integration_watch-3
http://en.wikipedia.org/wiki/Software_metric#cite_note-6
http://en.wikipedia.org/wiki/Software_metric#cite_note-7
http://en.wikipedia.org/wiki/Software_metric#cite_note-8
http://en.wikipedia.org/wiki/Software_metric#cite_note-9
http://en.wikipedia.org/wiki/Software_metric#cite_note-10
http://en.wikipedia.org/wiki/Comparison_of_development_estimation_software
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Object-oriented_programming

Page 3 of 7

 Afferent Couplings (Ca): The number of classes in other packages that

depend upon classes within the package is an indicator of the package's

responsibility.

 Efferent Couplings (Ce): The number of classes in other packages that the

classes in the package depend upon is an indicator of the package's

independence.

 Abstractness (A): The ratio of the number of abstract classes (and

interfaces) in the analyzed package to the total number of classes in the

analyzed package. The range for this metric is 0 to 1, with A=0 indicating a

completely concrete package and A=1 indicating a completely abstract

package.

 Instability (I): The ratio of efferent coupling (Ce) to total coupling (Ce +

Ca) such that I = Ce / (Ce + Ca). This metric is an indicator of the package's

resilience to change. The range for this metric is 0 to 1, with I=0 indicating a

completely stable package and I=1 indicating a completely unstable

package.

 Distance from the Main Sequence (D): The perpendicular distance of a

package from the idealized line A + I = 1. This metric is an indicator of the

package's balance between abstractness and stability. A package squarely on

the main sequence is optimally balanced with respect to its abstractness and

stability. Ideal packages are either completely abstract and stable (x=0, y=1)

or completely concrete and unstable (x=1, y=0). The range for this metric is

0 to 1, with D=0 indicating a package that is coincident with the main

sequence and D=1 indicating a package that is as far from the main sequence

as possible.

 Package Dependency Cycles: Package dependency cycles are reported

along with the hierarchical paths of packages participating in package

dependency cycles

7.3 Programming tool

A programming tool or software development tool is a computer program that

software developers use to create, debug, maintain, or otherwise support other

programs and applications. The term usually refers to relatively simple programs,

that can be combined together to accomplish a task, much as one might use

multiple hand tools to fix a physical object. The ability to use a variety of tools

productively is one hallmark of a skilled software engineer.

http://en.wikipedia.org/wiki/Coupling_(computer_science)
http://en.wikipedia.org/wiki/Efferent_coupling
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Tool
http://en.wikipedia.org/wiki/Software_engineer

Page 4 of 7

The most basic tools are a source code editor and a compiler or interpreter, which

are used ubiquitously and continuously. Other tools are used more or less

depending on the language, development methodology, and individual engineer,

and are often used for a discrete task, like a debugger or profiler. Tools may be

discrete programs, executed separately – often from the command line – or may be

parts of a single large program, called an integrated development environment

(IDE). In many cases, particularly for simpler use, simple ad hoc techniques are

used instead of a tool, such as print debugging instead of using a debugger, manual

timing (of overall program or section of code) instead of a profiler, or tracking

bugs in a text file or spreadsheet instead of a bug tracking system.

The distinction between tools and applications is murky. For example, developers

use simple databases (such as a file containing a list of important values) all the

time as tools. However a full-blown database is usually thought of as an

application or software in its own right. For many years, computer-assisted

software engineering (CASE) tools were sought after. Successful tools have proven

elusive. In one sense, CASE tools emphasized design and architecture support,

such as for UML. But the most successful of these tools are IDEs.

List of tools

Software tools come in many forms:

 Binary compatibility analysis: ABI Compliance Checker

 Bug Databases: Comparison of issue tracking systems - Including bug

tracking systems

 Build Tools: Build automation, List of build automation software

 Code coverage: Code coverage#Software code coverage tools.

 Code Sharing Sites: Freshmeat, Krugle, Sourceforge, GitHub. See also Code

search engines.

 Compilation and linking tools: GNU toolchain, gcc, Microsoft Visual

Studio, CodeWarrior, Xcode, ICC

 Debuggers: Debugger#List of debuggers. See also Debugging.

 Disassemblers: Generally reverse-engineering tools.

 Documentation generators: Comparison of documentation generators,

help2man, Plain Old Documentation, asciidoc

 Formal methods: Mathematical techniques for specification, development

and verification

 GUI interface generators

 Library interface generators: SWIG

http://en.wikipedia.org/wiki/Source_code_editor
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://en.wikipedia.org/wiki/Command_line
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Print_debugging
http://en.wikipedia.org/wiki/Bug_tracking_system
http://en.wikipedia.org/wiki/Flat_file_database
http://en.wikipedia.org/wiki/Computer-aided_software_engineering
http://en.wikipedia.org/wiki/Computer-aided_software_engineering
http://en.wikipedia.org/wiki/Binary_code_compatibility
http://en.wikipedia.org/wiki/ABI_Compliance_Checker
http://en.wikipedia.org/wiki/Bug_database
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Build_automation
http://en.wikipedia.org/wiki/List_of_build_automation_software
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Code_coverage#Software_code_coverage_tools
http://en.wikipedia.org/wiki/Freshmeat
http://en.wikipedia.org/wiki/Krugle
http://en.wikipedia.org/wiki/Sourceforge
http://en.wikipedia.org/wiki/GitHub
http://en.wikipedia.org/wiki/Category:Code_search_engines
http://en.wikipedia.org/wiki/Category:Code_search_engines
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Linker_(computing)
http://en.wikipedia.org/wiki/GNU_toolchain
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/CodeWarrior
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Intel_C_Compiler
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Debugger#List_of_debuggers
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Disassembler
http://en.wikipedia.org/wiki/Reverse-engineering
http://en.wikipedia.org/wiki/Documentation_generator
http://en.wikipedia.org/wiki/Comparison_of_documentation_generators
http://en.wikipedia.org/wiki/Plain_Old_Documentation
http://en.wikipedia.org/wiki/Asciidoc
http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/SWIG

Page 5 of 7

 Integration Tools

 Memory debuggers are frequently used in programming languages (such as

C and C++) that allow manual memory management and thus the possibility

of memory leaks and other problems. They are also useful to optimize

efficiency of memory usage. Examples: dmalloc, Electric Fence, Insure++,

Valgrind

 Parser generators: Parsing#Parser development software

 Performance analysis or profiling: List of performance analysis tool

 Refactoring Browser

 Revision control: List of revision control software, Comparison of revision

control software

 Scripting languages: PHP, Awk, Perl, Python, REXX, Ruby, Shell, Tcl

 Search: grep, find

 Source code Clones/Duplications Finding: Duplicate code#Tools

 Source code formatting: indent

 Source code editor

o Text editors: List of text editors, Comparison of text editors

 Source code generation tools: Automatic programming#Implementations

 Static code analysis: lint, List of tools for static code analysis

 Unit testing: List of unit testing frameworks

IDEs

Integrated Development Environments combine the features of many tools into one

package. They for example make it easier to do specific tasks, such as searching

for content only in files in a particular project. IDEs may for example be used for

development of enterprise-level applications.

Different aspects of IDEs for specific programming languages can be found in this

comparison of integrated development environments.

Programming complexity

Programming complexity (or software complexity) is a term that encompasses

numerous properties of a piece of software, all of which affect internal interactions.

According to several commentators, there is a distinction between the terms

complex and complicated. Complicated implies being difficult to understand but

with time and effort, ultimately knowable. Complex, on the other hand, describes

the interactions between a number of entities. As the number of entities increases,

http://en.wikipedia.org/wiki/Memory_debugger
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Manual_memory_management
http://en.wikipedia.org/wiki/Memory_leak
http://en.wikipedia.org/wiki/Dmalloc
http://en.wikipedia.org/wiki/Electric_Fence
http://en.wikipedia.org/wiki/Insure%2B%2B
http://en.wikipedia.org/wiki/Valgrind
http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Parsing#Parser_development_software
http://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://en.wikipedia.org/wiki/List_of_performance_analysis_tool
http://en.wikipedia.org/wiki/Refactoring_Browser
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/List_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/AWK_(programming_language)
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/REXX
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Operating_system_shell
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Grep
http://en.wikipedia.org/wiki/Find
http://en.wikipedia.org/wiki/Duplicate_code#Tools
http://en.wikipedia.org/wiki/Code_style
http://en.wikipedia.org/wiki/Indent_(Unix)
http://en.wikipedia.org/wiki/Source_code_editor
http://en.wikipedia.org/wiki/Text_editor
http://en.wikipedia.org/wiki/List_of_text_editors
http://en.wikipedia.org/wiki/Comparison_of_text_editors
http://en.wikipedia.org/wiki/Source_code_generation
http://en.wikipedia.org/wiki/Automatic_programming#Implementations
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Lint_(software)
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
http://en.wikipedia.org/wiki/Integrated_Development_Environment
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Page 6 of 7

the number of interactions between them would increase exponentially, and it

would get to a point where it would be impossible to know and understand all of

them. Similarly, higher levels of complexity in software increase the risk of

unintentionally interfering with interactions and so increases the chance of

introducing defects when making changes. In more extreme cases, it can make

modifying the software virtually impossible. The idea of linking software

complexity to the maintainability of the software has been explored extensively by

Professor Manny Lehman, who developed his Laws of Software Evolution from

his research. He and his co-Author Les Belady explored numerous possible

Software Metrics in their oft cited book,[1] that could be used to measure the state

of the software, eventually reaching the conclusion that the only practical solution

would be to use one that uses deterministic complexity models.

Measures

Many measures of software complexity have been proposed. Many of these,

although yielding a good representation of complexity, do not lend themselves to

easy measurement. Some of the more commonly used metrics are

 McCabe's cyclomatic complexity metric

 Halsteads software science metrics

 Henry and Kafura introduced Software Structure Metrics Based on

Information Flow in 1981[2] which measures complexity as a function of fan

in and fan out. They define fan-in of a procedure as the number of local

flows into that procedure plus the number of data structures from which that

procedure retrieves information. Fan-out is defined as the number of local

flows out of that procedure plus the number of data structures that the

procedure updates. Local flows relate to data passed to and from procedures

that call or are called by, the procedure in question. Henry and Kafura's

complexity value is defined as "the procedure length multiplied by the

square of fan-in multiplied by fan-out" (Length ×(fan-in × fan-out)²).

 A Metrics Suite for Object Oriented Design[3] was introduced by Chidamber

and Kemerer in 1994 focusing, as the title suggests, on metrics specifically

for object oriented code. They introduce six OO complexity metrics;

weighted methods per class, coupling between object classes, response for a

class, number of children, depth of inheritance tree and lack of cohesion of

methods

http://en.wikipedia.org/wiki/Meir_M._Lehman
http://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution
http://en.wikipedia.org/wiki/Les_Belady
http://en.wikipedia.org/wiki/Software_metrics
http://en.wikipedia.org/wiki/Programming_complexity#cite_note-1
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Halstead_complexity_measures
http://en.wikipedia.org/wiki/Programming_complexity#cite_note-2
http://en.wikipedia.org/wiki/Programming_complexity#cite_note-3

Page 7 of 7

There are several other metrics that can be used to measure programming

complexity:

 Branching complexity (Sneed Metric)

 Data access complexity (Card Metric)

 Data complexity (Chapin Metric)

 Data flow complexity (Elshof Metric)

 Decisional complexity (McClure Metric)

Types

Associated with, and dependent on the complexity of an existing program, is the

complexity associated with changing the program. The complexity of a problem

can be divided into two parts:[4]

1. Accidental complexity: Relates to difficulties a programmer faces due to the

chosen software engineering tools. A better fitting set of tools or a more

high-level programming language may reduce it.

2. Essential complexity: Is caused by the characteristics of the problem to be

solved and cannot be reduced

http://en.wikipedia.org/wiki/Programming_complexity#cite_note-4

