ANALYSIS OF MATERIALS

8. APPLICATION OF MATERIALS II

8.1. Introduction & History

Materials science, also commonly known as materials science and engineering, is an interdisciplinary field which deals with the discovery and design of new materials. This relatively new scientific field involves studying materials through the materials paradigm (synthesis, structure, properties and performance). It incorporates elements of physics and chemistry, and is at the forefront of nanoscience and nanotechnology research. In recent years, materials science has become more widely known as a specific field of science and engineering. It is an important part of forensic engineering (the investigation of materials, products, structures or components that fail or do not operate or function as intended, causing personal injury or damage to property) and failure analysis, the latter being the key to understanding, for example, the cause of various aviation accidents. Many of the most pressing scientific problems that are faced today are due to the limitations of the materials that are available and, as a result, breakthroughs in this field are likely to have a significant impact on the future of technology.

The material of choice of a given era is often a defining point. Phrases such as Stone Age, Bronze Age, Iron Age, and Steel Age are great examples. Originally deriving from the manufacture of ceramics and its putative derivative metallurgy, materials science is one of the oldest forms of engineering and applied science. Modern materials science evolved directly from metallurgy, which itself evolved from mining and (likely) ceramics and the use of fire. A major breakthrough in the understanding of materials occurred in the late 19th century, when the American scientist Josiah Willard Gibbs demonstrated that the thermodynamic properties related to atomic structure in various phases are related to the physical properties of a material. Important elements of modern materials science are a product of the space race: the understanding and engineering of the metallic alloys, and silica and carbon materials, used in the construction of space vehicles enabling the exploration of space. Materials science has driven, and been driven by, the development of revolutionary technologies such as plastics, semiconductors, and biomaterials.
Before the 1960s (and in some cases decades after), many materials science departments were named metallurgy departments, reflecting the 19th and early 20th century emphasis on metals. The field has since broadened to include every class of materials, including ceramics, polymers, semiconductors, magnetic materials, medical implant materials, biological materials and nanomaterials (materiomics).

8.2. Fundamentals

A material is defined as a substance (most a solid or condensed matter) that is intended to be used for certain applications. There are a myriad of materials around us—they can be found in anything from buildings to spacecrafts. Materials can generally be divided into two classes: crystalline and non-crystalline. The traditional examples of materials are metals, ceramics and polymers. New and advanced materials that are being developed include semiconductors, nanomaterials, biomaterials, etc. The basis of materials science involves studying the structure of materials, and relating them to their properties. Once, a materials scientists knows about this structure-property correlation, he/she can then go on to study the relative performance of a material in a certain application. The major determinants of the structure of a material and thus of its properties are its constituent chemical elements and the way in which it has been processed into its final form. These characteristics, taken together and related through the laws of thermodynamics and kinetics, govern a material’s microstructure, and thus its properties.

Structure

As mentioned above, structure is one of the most important components of the field of materials science. Materials science examines the structure of materials from the atomic scale, all the way up to the macro scale. Characterization is the way materials scientists examine the structure of materials. This involves techniques such as diffraction with x-rays, electrons, or neutrons, and various forms of spectroscopy and chemical analysis such as Raman spectroscopy, energy-dispersive spectroscopy (EDS), chromatography, thermal analysis, electron microscope analysis, etc. Structure is studied at various levels, as detailed below.
Nanostructure

Nanostructure deals with objects and structures that are in the 1—100 nm range. In many materials, atoms or molecules agglomerate together to form objects at the nanoscale. This leads to many interesting electrical, magnetic, optical and mechanical properties. In describing nanostructures it is necessary to differentiate between the number of dimensions on the nanoscale. Nanotextured surfaces have one dimension on the nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes have two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100 nm; its length could be much greater. Finally, spherical nanoparticles have three dimensions on the nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) often are used synonymously although UFP can reach into the micrometre range. The term 'nanostructure' is often used when referring to magnetic technology. Nanoscale structure in biology is often called ultrastructure. Materials whose atoms/molecules form constituents in the nanoscale (i.e., they form nanostructure) are called nanomaterials. Nanomaterials are subject of intense research in the materials science community due to the unique properties that they exhibit.

Microstructure

Microstructure is defined as the structure of a prepared surface or thin foil of material as revealed by a microscope above 25× magnification. It deals with objects in from 100 nm to few cm. The microstructure of a material (which can be broadly classified into metallic, polymeric, ceramic and composite) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behavior, wear resistance, and so on. Most of the traditional materials (such as metals and ceramics) are microstructured. The manufacture of a perfect crystal of a material is physically impossible. For example, a crystalline material will contain defects such as precipitates, grain boundaries (Hall–Petch relationship), interstitial atoms, vacancies or substitutional atoms. The microstructure of materials reveals these defects, so that they can be studied.

Crystallography

Crystallography is the science that examines the arrangement of atoms in crystalline solids. Crystallography is a useful tool for materials scientists. In single crystals, the effects of the crystalline arrangement of atoms is often easy to see
macroscopically, because the natural shapes of crystals reflect the atomic structure. In addition, physical properties are often controlled by crystalline defects. The understanding of crystal structures is an important prerequisite for understanding crystallographic defects. Mostly, materials do not occur as a single crystal, but in poly-crystalline form (i.e., as an aggregate of small crystals with different orientations). Because of this, the powder diffraction method, which uses diffraction patterns of polycrystalline samples with a large number of crystals, plays an important role in structural determination. Most materials have a crystalline structure. But, there are some important materials that do not exhibit regular crystal structure. Polymers display varying degrees of crystallinity, and many are completely non-crystalline. Glass as, some ceramics, and many natural materials are amorphous, not possessing any long-range order in their atomic arrangements. The study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic, as well as mechanical, descriptions of physical properties.

8.3. Materials in industry

Radical materials advances can drive the creation of new products or even new industries, but stable industries also employ materials scientists to make incremental improvements and troubleshoot issues with currently used materials. Industrial applications of materials science include materials design, cost-benefit tradeoffs in industrial production of materials, processing techniques (casting, rolling, welding, ion implantation, crystal growth, thin-film deposition, sintering, glassblowing, etc.), and analytical techniques (characterization techniques such as electron microscopy, x-ray diffraction, calorimetry, nuclear microscopy (HEFIB), Rutherford backscattering, neutron diffraction, small-angle X-ray scattering (SAXS), etc.).

Besides material characterization, the material scientist/engineer also deals with the extraction of materials and their conversion into useful forms. Thus ingot casting, foundry techniques, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a materials engineer. Often the presence, absence or variation of minute quantities of secondary elements and compounds in a bulk material will have a great impact on the final properties of the materials produced, for instance, steels are classified based on 1/10 and 1/100 weight percentages of the carbon and other alloying elements they contain. Thus, the extraction and purification techniques employed in the extraction of iron in the blast furnace will have an impact of the quality of steel that may be produced.
Ceramics and Glasses

Another application of the material sciences is the structures of glass and ceramics, typically associated with the most brittle materials. Bonding in ceramics and glasses use covalent and ionic-covalent types with SiO₂ (silica or sand) as a fundamental building block. Ceramics are as soft as clay and as hard as stone and concrete. Usually, they are crystalline in form. Most glasses contain a metal oxide fused with silica. At high temperatures used to prepare glass, the material is a viscous liquid. The structure of glass forms into an amorphous state upon cooling. Windowpanes and eyeglasses are important examples. Fibers of glass are also available. Scratch resistant Corning Gorilla Glass is a well-known example of the application of materials science to drastically improve the properties of common components. Diamond and carbon in its graphite form are considered to be ceramics.

Engineering ceramics are known for their stiffness and stability under high temperatures, compression and electrical stress. Alumina, silicon carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. Hot pressing provides higher density material. Chemical vapor deposition can place a film of a ceramic on another material. Cermets are ceramic particles containing some metals. The wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties.

Composite Materials

Filaments are commonly used for reinforcement in composite materials. Another application of material science in industry is the making of composite materials. Composite materials are structured materials composed of two or more macroscopic phases. Applications range from structural elements such as steel-reinforced concrete, to the thermally insulative tiles which play a key and integral role in NASA's Space Shuttle thermal protection system which is used to protect the surface of the shuttle from the heat of re-entry into the Earth's atmosphere. One example is reinforced Carbon-Carbon (RCC), the light gray material which withstands re-entry temperatures up to 1510 °C (2750 °F) and protects the Space Shuttle's wing leading edges and nose cap. RCC is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. After curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfural alcohol in a vacuum chamber, and cured/pyrolized to convert the furfural alcohol to carbon. In order to provide
oxidation resistance for reuse capability, the outer layers of the RCC are converted to silicon carbide.

Other examples can be seen in the "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile-butadiene-styrene (ABS) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. These additions may be referred to as reinforcing fibers, or dispersants, depending on their purpose.