9. APPLICATION OF MATERIALS III

9.1. Synthesis & Processing

Synthesis and processing involves the creation of materials with the desired micro/nanostructure. From an engineering standpoint, materials cannot be used in industry if no economical manufacturing method for it has been developed. Thus, the processing of materials is very important to the field of materials science. Different materials require different processing/synthesis techniques. For example, the processing of metals has historically been very important as is studied under the branch of materials science known as physical metallurgy. Also, chemical and physical techniques are also used to synthesize other materials such as polymers, ceramics, thin films, etc. Currently, new techniques are being developed to synthesis nanomaterials such as graphene.

Thermodynamics

Thermodynamics is concerned with heat and temperature and their relation to energy and work. It defines macroscopic variables, such as internal energy, entropy, and pressure, that partly describe a body of matter or radiation. It states that the behavior of those variables is subject to general constraints, that are common to all materials, not the peculiar properties of particular materials. These general constraints are expressed in the four laws of thermodynamics. Thermodynamics describes the bulk behavior of the body, not the microscopic behaviors of the very large numbers of its microscopic constituents, such as molecules. Its laws are explained by statistical mechanics, in terms of the microscopic constituents. The study of thermodynamics is fundamental to materials science. It forms the foundation to treat general phenomena in materials science and engineering, including chemical reactions, magnetism, polarizability, and elasticity. It also helps in the understanding of phase diagrams and phase equilibrium.

Kinetics

Kinetics is the study of the rates at which systems that are out of equilibrium change under the influence of various forces. When applied to materials science, it
deals with how a materials changes with time (moves from non-equilibrium to equilibrium state) due to application of a certain field—it details the rate of various processes evolving in materials including shape, size, composition and structure. Diffusion is important in the study of kinetics as this is the most common mechanism by which materials undergo change. Kinetics is essential in processing of materials because, among other things, it details how the microstructure changes with application of heat.

9.2. Materials in Research

Materials science has received much attention from researchers. In most universities, many departments ranging from physics to chemistry to chemical engineering in addition to materials science departments are involved in materials research. Research in materials science is vibrant and consists of many avenues. The following list is in no way exhaustive, it just serves to highlight certain important research areas.

Nanomaterials

Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 1000 nanometers \((10^{-9}\) meter) but is usually 1—100 nm. Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, or mechanical properties. The field of nanomaterials is loosely organized, like the traditional field of chemistry, into organic (carbon-based) nanomaterials such as fullerenes, and inorganic nanomaterials based on other elements, such as silicon. Examples of nanomaterials include fullerenes, carbon nanotubes, nanocrystals, etc.

Biomaterials

A biomaterial is any matter, surface, or construct that interacts with biological systems. As a science, biomaterials is about fifty years old. The study of biomaterials is called biomaterials science. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.
Biomaterials can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches utilizing metallic components, polymers, ceramics or composite materials. They are often used and/or adapted for a medical application, and thus comprises whole or part of a living structure or biomedical device which performs, augments, or replaces a natural function. Such functions may be benign, like being used for a heart valve, or may be bioactive with a more interactive functionality such as hydroxyapatite coated hip implants. Biomaterials are also used every day in dental applications, surgery, and drug delivery. For example, a construct with impregnated pharmaceutical products can be placed into the body, which permits the prolonged release of a drug over an extended period of time. A biomaterial may also be an autograft, allograft or xenograft used as a transplant material.

Electronic, Optical and Magnetic Materials

Semiconductors, metals, and ceramics are used today to form highly complex systems, such as integrated electronic circuits, optoelectronic devices, and magnetic and optical mass storage media. These materials form the basis of our modern computing world, and hence research into these materials are of vital importance. Semiconductors are a traditional example of these type of material. They are materials that have properties that are intermediate between conductors and insulators. Their electrical conductance are very sensitive to impurity concentrations, and this leads to fact that they can be doped. Hence, semiconductors form the basis of the traditional computer. This field also includes new areas of research such as superconducting materials, spintronics, metamaterials, etc. The study of these materials involves knowledge of materials science and solid state physics or condensed matter physics.

Computational Materials Science and Materials Theory

With the increase in computing power, simulating the behavior of materials has become possible. This enables materials scientists to discovery properties of materials previously unknown, as well as to design new materials. Up until now, new materials were found by a time consuming trial and error process. But, now it is hoped that computational techniques could drastically reduce that time, and allow us to tailor materials properties. This involves simulating materials at all length scales, using methods such as density functional theory, molecular dynamics, etc.
9.3. Industrial Materials

Composite materials

Filaments are commonly used for reinforcement in composite materials. Another application of material science in industry is the making of composite materials. Composite materials are structured materials composed of two or more macroscopic phases. Applications range from structural elements such as steel-reinforced concrete, to the thermally insulative tiles which play a key and integral role in NASA's Space Shuttle thermal protection system which is used to protect the surface of the shuttle from the heat of re-entry into the Earth's atmosphere. One example is reinforced Carbon-Carbon (RCC), the light gray material which withstands re-entry temperatures up to 1510 °C (2750 °F) and protects the Space Shuttle's wing leading edges and nose cap. RCC is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. After curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfural alcohol in a vacuum chamber, and cured/pyrolized to convert the furfural alcohol to carbon. In order to provide oxidation resistance for reuse capability, the outer layers of the RCC are converted to silicon carbide.

Other examples can be seen in the "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile-butadiene-styrene (ABS) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. These additions may be referred to as reinforcing fibers, or dispersants, depending on their purpose.

Polymers

Polymers are also an important part of materials science. Polymers are the raw materials (the resins) used to make what we commonly call plastics. Plastics are really the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. Polymers which have been around, and which are in current widespread use, include polyethylene, polypropylene, PVC, polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. Plastics are generally classified as "commodity", "specialty" and "engineering" plastics.
PVC (polyvinyl-chloride) is widely used, inexpensive, and annual production quantities are large. It lends itself to an incredible array of applications, from artificial leather to electrical insulation and cabling, packaging and containers. Its fabrication and processing are simple and well-established. The versatility of PVC is due to the wide range of plasticizers and other additives that it accepts. The term "additives" in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties. Polycarbonate would be normally considered an engineering plastic (other examples include PEEK, ABS). Engineering plastics are valued for their superior strengths and other special material properties. They are usually not used for disposable applications, unlike commodity plastics.

Specialty plastics are materials with unique characteristics, such as ultra-high strength, electrical conductivity, electro-fluorescence, high thermal stability, etc. The dividing lines between the various types of plastics is not based on material but rather on their properties and applications. For instance, polyethylene (PE) is a cheap, low friction polymer commonly used to make disposable shopping bags and trash bags, and is considered a commodity plastic, whereas medium-density polyethylene (MDPE) is used for underground gas and water pipes, and another variety called Ultra-high Molecular Weight Polyethylene UHMWPE is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low-friction socket in implanted hip joints.

Metal alloys

The study of metal alloys is a significant part of materials science. Of all the metallic alloys in use today, the alloys of iron (steel, stainless steel, cast iron, tool steel, alloy steels) make up the largest proportion both by quantity and commercial value. Iron alloyed with various proportions of carbon gives low, mid and high carbon steels. An iron carbon alloy is only considered steel if the carbon level is between 0.01% and 2.00%. For the steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. Heat treatment processes such as quenching and tempering can significantly change these properties however. Cast Iron is defined as an iron–carbon alloy with more than 2.00% but less than 6.67% carbon. Stainless steel is defined as a regular steel alloy with greater than 10% by weight alloying content of Chromium. Nickel and Molybdenum are typically also found in stainless steels.
Other significant metallic alloys are those of aluminum, titanium, copper and magnesium. Copper alloys have been known for a long time (since the Bronze Age), while the alloys of the other three metals have been relatively recently developed. Due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. The alloys of aluminum, titanium and magnesium are also known and valued for their high strength-to-weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. These materials are ideal for situations where high strength-to-weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications.