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9.  Algebra Theories I 

 

 9.1 Defined 

 An algebraic theory is a concept in universal algebra that describes a 

specific type of algebraic gadget, such as groups or rings. An individual group or 

ring is a model of the appropriate theory. Roughly speaking, an algebraic theory 

consists of a specification of operations and laws that these operations must satisfy.  

 

Traditionally, algebraic theories were described in terms of logical syntax, as first-

order theories whose signatures have only function symbols, no relation symbols, 

and all of whose axioms are universally quantified equations. Such descriptions 

may be viewed as presentations of a theory, analogous to generators and 

relations presentations of groups. In particular, different logical presentations can 

lead to equivalent mathematical objects. 

In his thesis, Bill Lawvere undertook a more invariant description of (finitary) 

algebraic theories. Here al lthe definable operations of an algebraic theory, or 

rather their equivalence classes modulo the equational axioms imposed by the 

theory, are packaged together to form the morphisms of a category with finite 

products, called a Lawvere theory. None of these operations are considered 

“primitive”, so a Lawvere theory doesn’t play favorites among operations. 

The article Lawvere theory treats the traditional notion of finitary, single-sorted 

Lawvere theories, with worked examples. The core of the present article is a 

working out of the precise connection between infinitary (multi-sorted) Lawvere 

theories and monads. 

Basic Intuitions 

Intuitively, a Lawvere theory is the “generic category of products equipped with 

an object x  of given algebraic type T ”. For example, the Lawvere theory of 

groups is what you get by assuming a category with products and with a group 

object x inside, and nothing more; x can be considered “the generic group”. Every 

object in the Lawvere theory is a finite power x n of the generic object x . The 

morphisms x n →x are nothing but the n-ary operations it is possible to define on x 

. 

In other words, if we abstract away from the usual set-theoretic semantics, and 

consider a model for the theory of groups to be any category with finite products 

together with a specified group object inside, then the Lawvere theory of groups 
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becomes a universal model of the theory, and carries all the information of the theory 

but independent of a particular presentation. In this way, theories and models of a 

theory are placed on an equal footing. A model of a Lawvere theory T in a category 

with products C is nothing but (i.e., is equivalent to) a product-preserving functor 

T→C ; where the generic object x is sent to is the given model of T in C . If T is the 

Lawvere theory of groups, then a product-preserving functor T→Set is tantamount to 

an ordinary group. 

The actual categorical construction of a Lawvere theory is described very easily and 

elegantly: it is the category opposite to the category of (finitely generated) free 

algebras of the theory. The free algebra on one generator becomes the generic object. 

If theories and models are placed on an equal footing, then what feature sets 

“theories” per se apart? In some very abstract sense, any category with products C 

could be considered a theory, where the C -models in D are product-preserving 

functors C→D . Sometimes this is a useful point of view, but it is far removed from 

traditional syntactic considerations. To give a more “honest” answer, we remember 

that an ordinary (finitary, single-sorted) algebraic theory a la Lawvere is generated 

from a single object x , and that every other object should be (at least up to 

isomorphism) a finite power x n . The exponent n serves to keep track of arities of 

operations. 

The generic “category of arities” n is, in the finitary case, the category opposite to the 

category of finite sets (opposite because the n appears contravariantly in powers x n ). 

This is also the Lawvere “theory of equality”, or if you prefer the theory generated by 

an empty signature. The answer to the question “what sets theories apart” is that a 

Lawvere theory T should come equipped with a product-preserving functor 

x − :FinSet op →T  

that is essentially surjective (each object of T is isomorphic to x n for some arity n ). 

As we see below, this definition is a cornerstone to a very elegant theory of algebraic 

theories. 

9.2  Extensions 

Infinitary operations 

Lawvere’s program can be extended to cover many theories with infinitary 

operations as well. In the best-behaved case, one has algebraic theories involving 

only operations of arity bounded by some cardinal number — or, more precisely, 
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belonging to some arity class — and these can be understood category-

theoretically with a suitable generalization of Lawvere theories. In this bounded 

case, the Lawvere theory can be described by a small category, and the category of 

models will be very well behaved, in particular it is a locally presentable category. 

In such cases there is a satisfying duality between syntax and semantics along the 

lines of Gabriel-Ulmer duality. 

Lawvere’s program can to some degree be extended further: one can work with 

Lawvere theories which are locally small (not just small) categories. Here, the 

theory might not be bounded, but at least there is only a small set of operations of 

each arity. Examples of such large theories include 

 The theory of algebras with arbitrary sums (one model of which is [0,∞]), 

 The theory of sup-lattices, in which there is one operation of each arity, and 

 The theory of compact Hausdorff spaces, where the operations are 

parametrized by ultrafilters. 

These examples go outside the bounded (small theory) case. Locally small theories 

in this sense are co-extensive with the notion of monad (on Set): there is a free-

forgetful adjunction between Set and the category of models, and algebras of the 

theory are equivalent to algebras of the monad. 

In the worst case, there are algebraic theories where the number of definable 

operations explodes, so that there may be a proper class of operations of some 

fixed arity. In these case there are no free algebras, and Lawvere’s reformulation 

no longer applies. An example is the theory of complete Boolean algebras. (Note: 

category theorists who define a category U:A→Set over sets to be algebraic if it 

ismonadic would therefore not consider the variety of algebras in such cases to be 

“algebraic”). 

9.3  Metaphor 

 Ring theory is a branch of mathematics with a well-developed terminology. 

A ring A determines and is determined by an algebraic theory, whose models are 

left A-modules and whose n-ary operations have the form 

(x1,…,xn)→a1x1+…+anxn 

for some n-tuple (a1,…,an) of elements of A. We may call such an algebraic 

theory annular. The punmodel/module is due to Jon Beck. The notion that an 

algebraic theory is a generalized ring is often a fertile one, that automatically 

provides a slew of suggestive terminology and interesting problems. Many 

fundamental ideas of ring/module-theory are simply the restriction to annular 
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algebraic theories of ideas that apply more widely to algebraic theories and their 

models. Let us denote the category of models and homomorphisms (in Set) of an 

algebraic theory A by AMod. Then compare the following to their counterparts in 

ring theory: 

 

Tensor product theory: 

If A and B are algebraic theories, the algebraic theory A⊗B is characterized by the 

fact that its models can be identified with A-models in BMod, or equivalently as B-

models in AMod. There are maps of theories A→A⊗B and B→A⊗B which are 

universal for maps of theories A→C and B→C whose images commute, for any 

theory C. 

Matrix theory: 

Let A be a Lawvere theory with generic object T. The full subcategory 

of A generated by the cartesian powers of Tn is also a Lawvere theory, that we 

denote by Mn(A). In the case of an annular theory (the theory of modules over a 

ring that we also call A), this is the construction of n×n matrices over A. If we 

denote by Mn the application of this construction to the initial theory (the theory 

of sets), then we may identify Mn(A) with the tensor product theory Mn⊗A. 

It is an amusing exercise to present Mn in terms of generating operations and  

relations between them.  

 

Bimodel: 

Let A and B be algebraic theories. The category [A,B] of (A,B)-bimodels and their 

homomorphisms is the category of A-models and homomorphisms in BModop. An 

alternative description is that is a co-A-model in BMod. Each such 

bimodel M determines and is determined by a pair of adjoint functors 

HomB(M,?): BMod→AMod 

M⊗A?: AMod→BMod 

Composition of such adjoint pairs yields a functor 

⊗B:[B,C]×[A,B]→[A,C] 

The category [A,A] has a unit object – it would be churlish not to overload our 

notation yet further by calling it A, corresponding to the fact that the free A-model 

on one generator has a canonical co-A-structure. 
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So we have a bicategory; the 0-cells are algebraic theories, the 1-cells are bimodels 

and the 2-cells are homomorphisms of bimodels. Consider a monad in this 

bicategory: an algebraic theory A, an (A,A)-bimodel M, and 

homomorphisms η:A→M, μ:M⊗AM→M satisfying the usual rules.  

A module of this monad is given by an A-model B together with an 

action M⊗AB→B satisfying the usual rules. It should be clear that such modules 

are models of an algebraic theory, which we shall confusingly denote by M. This 

theory is an extension of A by unary operations (the elements of the underlying set 

of the underlying A-model of the underlying (A,A)-bimodel of the monad). The 

rules for composing them are given by μ. They satisfy distributive laws over the 

operations of A given by the co-A-structure of M. 

We may overload η to refer both to a homomorphism of bimodels and to a map of 

algebraic theories. The forgetful functor MMod→AMod has for its left adjoint the 

functor M⊗A?, but it also has a right adjoint HomA(M,?). So in this case the 

forgetful functor preserves colimits as well as limits. In fact all maps of theories 

whose associated forgetful functors have right adjoints must arise from such a 

monad in the bi-category of bi-models. 

I would like some snappier terminology at this point. What should we call these 

monads in the bicategory of bimodels? If we use words like algebra or monad our 

rickety overloaded onomastic scaffolding starts to creak ominously. Put on your 

hard hats. We are in territory where to discriminate too meticulously between 

different views of the same thing is to invite fuddlement. And yet we have to hold 

in our heads that isomorphism is not equality, and that too cavalier an approach to 

identification can sometimes lead to error. 

If A were a ring, then I'd call M an ‘A-algebra’. Unfortunately, that term can also be 

used for an A-model. Also, even in ring theory, that term is usually only used 

when A is commutative. One might, following ‘bimodule’ (and ‘bimodel’) say ‘bi-

algebra’ in that case, but that also has another meaning. So let's give up in that 

direction. 

But it seems OK to me to call it an ‘A-monad’. —Toby 

This fits with the fact that M is an extension of A by unary operations, so one 

should be reminded of monoids, maybe? —Gavin 
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