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INTEGRALS 

 

10.1 Indefinite integral: Integration is an important concept in mathematics and, 

together with its inverse, differentiation, is one of the two main operations in 

calculus. The principles of integration were formulated independently by Isaac 

Newton and Gottfried Leibniz in the late 17th century. Through the fundamental 

theorem of calculus, which they independently developed, integration is connected 

with differentiation: if f is a continuous real-valued function defined on a closed 

interval [a, b], then, once an antiderivative F of f is known, the definite integral of f 

over that interval is given by 

 

 

Integrals and derivatives became the basic tools of calculus, with numerous 

applications in science and engineering. The founders of calculus thought of the 

integral as an infinite sum of rectangles of infinitesimal width. A rigorous 

mathematical definition of the integral was given by Bernhard Riemann. It is based 

on a limiting procedure which approximates the area of a curvilinear region by 

breaking the region into thin vertical slabs. Beginning in the nineteenth century, 

more sophisticated notions of integrals began to appear, where the type of the 

function as well as the domain over which the integration is performed has been 

generalised.  

 

A line integral is defined for functions of two or three variables, and the interval of 

integration [a, b] is replaced by a certain curve connecting two points on the plane 

or in the space. In a surface integral, the curve is replaced by a piece of a surface in 

the three-dimensional space. Integrals of differential forms play a fundamental role 

in modern differential geometry. These generalizations of integrals first arose from 

the needs of physics, and they play an important role in the formulation of many 

physical laws, notably those of electrodynamics. There are many modern concepts 

of integration, among these, the most common is based on the abstract 

mathematical theory known as Lebesgue integration, developed by Henri 

Lebesgue. 

 

History 

Pre-calculus integration 

The first documented systematic technique capable of determining integrals is 

the method of exhaustion of the ancient Greek astronomer Eudoxus (ca. 370 BC), 

which sought to find areas and volumes by breaking them up into an infinite 

http://en.wikipedia.org/wiki/Method_of_exhaustion
http://en.wikipedia.org/wiki/Ancient_Greek
http://en.wikipedia.org/wiki/Eudoxus_of_Cnidus
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number of shapes for which the area or volume was known. This method was 

further developed and employed by Archimedes in the 3rd century BC and used to 

calculate areas for parabolas and an approximation to the area of a circle. Similar 

methods were independently developed in China around the 3rd century AD 

by Liu Hui, who used it to find the area of the circle. This method was later used in 

the 5th century by Chinese father-and-son mathematicians Zu Chongzhi and Zu 

Geng to find the volume of a sphere (Shea 2007; Katz 2004, pp. 125–126). 

The next significant advances in integral calculus did not begin to appear until the 

16th century. At this time the work of Cavalieri with his method of indivisibles, 

and work by Fermat, began to lay the foundations of modern calculus, with 

Cavalieri computing the integrals of x
n
 up to degree n = 9 in Cavalieri's quadrature 

formula. Further steps were made in the early 17th century 

byBarrow and Torricelli, who provided the first hints of a connection between 

integration and differentiation. Barrow provided the first proof of the fundamental 

theorem of calculus. Wallisgeneralized Cavalieri's method, computing integrals 

of x to a general power, including negative powers and fractional powers. 

Newton and Leibniz 

The major advance in integration came in the 17th century with the independent 

discovery of the fundamental theorem of calculus by Newton and Leibniz. The 

theorem demonstrates a connection between integration and differentiation. This 

connection, combined with the comparative ease of differentiation, can be 

exploited to calculate integrals. In particular, the fundamental theorem of calculus 

allows one to solve a much broader class of problems. Equal in importance is the 

comprehensive mathematical framework that both Newton and Leibniz developed. 

Given the name infinitesimal calculus, it allowed for precise analysis of functions 

within continuous domains. This framework eventually became modern calculus, 

whose notation for integrals is drawn directly from the work of Leibniz. 

Formalizing integrals 

While Newton and Leibniz provided a systematic approach to integration, their 

work lacked a degree of rigour. Bishop Berkeley memorably attacked the 

vanishing increments used by Newton, calling them "ghosts of departed 

quantities". Calculus acquired a firmer footing with the development of limits. 

Integration was first rigorously formalized, using limits, by Riemann. Although all 

bounded piecewise continuous functions are Riemann integrable on a bounded 

interval, subsequently more general functions were considered—particularly in the 

context of Fourier analysis—to which Riemann's definition does not apply, 

and Lebesgue formulated a different definition of integral, founded in measure 

theory (a subfield of real analysis). Other definitions of integral, extending 
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Riemann's and Lebesgue's approaches, were proposed. These approaches based on 

the real number system are the ones most common today, but alternative 

approaches exist, such as a definition of integral as the standard part of an infinite 

Riemann sum, based on the hyperreal number system. 

Historical notation 

Isaac Newton used a small vertical bar above a variable to indicate integration, or 

placed the variable inside a box. The vertical bar was easily confused with  or , 

which Newton used to indicate differentiation, and the box notation was difficult 

for printers to reproduce, so these notations were not widely adopted. 

The modern notation for the indefinite integral was introduced by Gottfried 

Leibniz in 1675 (Burton 1988, p. 359; Leibniz 1899, p. 154). He adapted 

the integral symbol, ∫, from the letter ſ (long s), standing for summa (written 

as ſumma; Latin for "sum" or "total"). The modern notation for the definite 

integral, with limits above and below the integral sign, was first used by Joseph 

Fourier in Mémoires of the French Academy around 1819–20, reprinted in his 

book of 1822 (Cajori 1929, pp. 249–250; Fourier 1822, §231). 

Terminology and notation 

The simplest case, the integral over x of a real-valued function f(x), is written as 

 

The integral sign ∫ represents integration. The dx indicates that we are integrating 

over x; x is called the variable of integration. Inside the ∫...dx is the expression to be 

integrated, called theintegrand. In correct mathematical typography, the dx is 

separated from the integrand by a space (as shown). Some authors use an 

upright d (that is, dx instead of dx). In this case the integrand is the function f(x). 

Because there is no domain specified, the integral is called an indefinite integral. 

When integrating over a specified domain, we speak of a definite integral. 

Integrating over a domain D is written as  or  if the 

domain is an interval [a, b] of x. 

The domain D or the interval [a, b] is called the domain of integration. 

If a function has an integral, it is said to be integrable. In general, the integrand 

may be a function of more than one variable, and the domain of integration may be 

an area, volume, a higher-dimensional region, or even an abstract space that does 

not have a geometric structure in any usual sense (such as a sample space in 

probability theory). 
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In the modern Arabic mathematical notation, which aims at pre-university levels of 

education in the Arab world and is written from right to left, a reflected integral 

symbol  is used (W3C 2006). 

The variable of integration dx has different interpretations depending on the theory 

being used. It can be seen as strictly a notation indicating that x is a dummy 

variable of integration; if the integral is seen as a Riemann sum, dx is a reflection 

of the weights or widths d of the intervals of x; in Lebesgue integration and its 

extensions, dx is a measure; in non-standard analysis, it is an infinitesimal; or it can 

be seen as an independent mathematical quantity, a differential form. More 

complicated cases may vary the notation slightly. In Leibniz's notation, dx is 

interpreted as an infinitesimal change in x. Although Leibniz's interpretation lacks 

rigour, his integration notation is the most common one in use today. 

Introduction 

Integrals appear in many practical situations. If a swimming pool is rectangular 

with a flat bottom, then from its length, width, and depth we can easily determine 

the volume of water it can contain (to fill it), the area of its surface (to cover it), 

and the length of its edge (to rope it). But if it is oval with a rounded bottom, all of 

these quantities call for integrals. Practical approximations may suffice for such 

trivial examples, but precision engineering (of any discipline) requires exact and 

rigorous values for these elements. 

 

To start off, consider the curve y = f(x) between x = 0 and x = 1 with f(x) = √x. We 

ask: What is the area under the function f, in the interval from 0 to 1?and call this 

(yet unknown) area the integral of f. The notation for this integral will be 

 

As a first approximation, look at the unit square given by the sides x = 0 to x = 

1 and y = f(0) = 0 and y = f(1) = 1. Its area is exactly 1. As it is, the true value of 

the integral must be somewhat less. Decreasing the width of the approximation 

rectangles shall give a better result; so cross the interval in five steps, using the 

approximation points 0, 1/5, 2/5, and so on to 1. Fit a box for each step using the 

right end height of each curve piece, thus √(1⁄5), √(2⁄5), and so on to √1 = 1. 
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Lebesgue integral 

 

 

Riemann–Darboux's integration (top) and Lebesgue integration (bottom) 

It is often of interest, both in theory and applications, to be able to pass to the limit 

under the integral. For instance, a sequence of functions can frequently be 

constructed that approximate, in a suitable sense, the solution to a problem. Then 

the integral of the solution function should be the limit of the integrals of the 

approximations. However, many functions that can be obtained as limits are not 

Riemann integrable, and so such limit theorems do not hold with the Riemann 

integral. Therefore it is of great importance to have a definition of the integral that 

allows a wider class of functions to be integrated (Rudin 1987). 

 

Such an integral is the Lebesgue integral, that exploits the following fact to enlarge 

the class of integrable functions: if the values of a function are rearranged over the 

domain, the integral of a function should remain the same. Thus Henri Lebesgue 

introduced the integral bearing his name, explaining this integral thus in a letter to 

Paul Montel: 

 

I have to pay a certain sum, which I have collected in my pocket. I take the bills 

and coins out of my pocket and give them to the creditor in the order I find them 

until I have reached the total sum. This is the Riemann integral. But I can proceed 

differently. After I have taken all the money out of my pocket I order the bills and 

coins according to identical values and then I pay the several heaps one after the 

other to the creditor. This is my integral. 

 

Source: (Siegmund-Schultze 2008) 

As Folland (1984, p. 56) puts it, "To compute the Riemann integral of f, one 

partitions the domain [a,b] into subintervals", while in the Lebesgue integral, "one 

is in effect partitioning the range of f". The definition of the Lebesgue integral thus 

begins with a measure, μ. In the simplest case, the Lebesgue measure μ(A) of an 

interval A = [a,b] is its width, b − a, so that the Lebesgue integral agrees with the 

(proper) Riemann integral when both exist. In more complicated cases, the sets 

being measured can be highly fragmented, with no continuity and no resemblance 

to intervals. 

 

Methods for computing integrals 

Analytical 

The most basic technique for computing definite integrals of one real variable is 

based on the fundamental theorem of calculus. Let f(x) be the function of x to be 
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integrated over a given interval [a, b]. Then, find an antiderivative of f; that is, a 

function F such that F' = f on the interval. Provided the integrand and integral have 

no singularities on the path of integration, by the fundamental theorem of calculus, 

 

 

The integral is not actually the antiderivative, but the fundamental theorem 

provides a way to use antiderivatives to evaluate definite integrals. 

 

The most difficult step is usually to find the antiderivative of f. It is rarely possible 

to glance at a function and write down its antiderivative. More often, it is necessary 

to use one of the many techniques that have been developed to evaluate integrals. 

Most of these techniques rewrite one integral as a different one which is hopefully 

more tractable. Techniques include: 

 

Integration by substitution 

Integration by parts 

Inverse function integration 

Changing the order of integration 

Integration by trigonometric substitution 

Tangent half-angle substitution 

Integration by partial fractions 

Integration by reduction formulae 

Integration using parametric derivatives 

Integration using Euler's formula 

Euler substitution 

Differentiation under the integral sign 

Contour integration 

 

Alternative methods exist to compute more complex integrals. Many 

nonelementary integrals can be expanded in a Taylor series and integrated term by 

term. Occasionally, the resulting infinite series can be summed analytically. The 

method of convolution using Meijer G-functions can also be used, assuming that 

the integrand can be written as a product of Meijer G-functions. There are also 

many less common ways of calculating definite integrals; for instance, Parseval's 

identity can be used to transform an integral over a rectangular region into an 

infinite sum. Occasionally, an integral can be evaluated by a trick; for an example 

of this, see Gaussian integral. 

 

Computations of volumes of solids of revolution can usually be done with disk 

integration or shell integration. 
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Specific results which have been worked out by various techniques are collected in 

the list of integrals. 

 

Symbolic 

Main article: Symbolic integration 

Many problems in mathematics, physics, and engineering involve integration 

where an explicit formula for the integral is desired. Extensive tables of integrals 

have been compiled and published over the years for this purpose. With the spread 

of computers, many professionals, educators, and students have turned to computer 

algebra systems that are specifically designed to perform difficult or tedious tasks, 

including integration. Symbolic integration has been one of the motivations for the 

development of the first such systems, like Macsyma. 

 

A major mathematical difficulty in symbolic integration is that in many cases, a 

closed formula for the antiderivative of a rather simple-looking function does not 

exist. For instance, it is known that the antiderivatives of the functions exp(x2), xx 

and (sin x)/x cannot be expressed in the closed form involving only rational and 

exponential functions, logarithm, trigonometric and inverse trigonometric 

functions, and the operations of multiplication and composition; in other words, 

none of the three given functions is integrable in elementary functions, which are 

the functions which may be built from rational functions, roots of a polynomial, 

logarithm, and exponential functions.  

 

The Risch algorithm provides a general criterion to determine whether the 

antiderivative of an elementary function is elementary, and, if it is, to compute it. 

Unfortunately, it turns out that functions with closed expressions of antiderivatives 

are the exception rather than the rule. Consequently, computerized algebra systems 

have no hope of being able to find an antiderivative for a randomly constructed 

elementary function. On the positive side, if the 'building blocks' for 

antiderivatives are fixed in advance, it may be still be possible to decide whether 

the antiderivative of a given function can be expressed using these blocks and 

operations of multiplication and composition, and to find the symbolic answer 

whenever it exists. The Risch algorithm, implemented in Mathematica and other 

computer algebra systems, does just that for functions and antiderivatives built 

from rational functions, radicals, logarithm, and exponential functions. 

 

Some special integrands occur often enough to warrant special study. In particular, 

it may be useful to have, in the set of antiderivatives, the special functions of 

physics (like the Legendre functions, the hypergeometric function, the Gamma 
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function, the Incomplete Gamma function and so on — see Symbolic integration 

for more details). Extending the Risch's algorithm to include such functions is 

possible but challenging and has been an active research subject. 

 

More recently a new approach has emerged, using D-finite function, which are the 

solutions of linear differential equations with polynomial coefficients. Most of the 

elementary and special functions are D-finite and the integral of a D-finite function 

is also a D-finite function. This provide an algorithm to express the antiderivative 

of a D-finite function as the solution of a differential equation. 

 

This theory allows also to compute a definite integrals of a D-function as the sum 

of a series given by the first coefficients and an algorithm to compute any 

coefficient.[1] 

 

Numerical 

The integrals encountered in a basic calculus course are deliberately chosen for 

simplicity; those found in real applications are not always so accommodating. 

Some integrals cannot be found exactly, some require special functions which 

themselves are a challenge to compute, and others are so complex that finding the 

exact answer is too slow. This motivates the study and application of numerical 

methods for approximating integrals, which today use floating-point arithmetic on 

digital electronic computers. Many of the ideas arose much earlier, for hand 

calculations; but the speed of general-purpose computers like the ENIAC created a 

need for improvements. 


