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EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS 

8.1 equilibrium of a rigid body in a plane: Rigid-body dynamics studies the 

movement of systems of interconnected bodies under the action of external forces. 

The assumption that the bodies are rigid, which means that they do not deform 

under the action of applied forces, simplifies the analysis by reducing the 

parameters that describe the configuration of the system to the translation and 

rotation of reference frames attached to each body.[1][2] 

 

The dynamics of a rigid body system is defined by its equations of motion, which 

are derived using either Newtons laws of motion or Lagrangian mechanics. The 

solution of these equations of motion defines how the configuration of the system 

of rigid bodies changes as a function of time. The formulation and solution of rigid 

body dynamics is an important tool in the computer simulation of mechanical 

systems. 

 

If a rigid system of particles moves such that the trajectory of every particle is 

parallel to a fixed plane, the system is said to be constrained to planar movement. 

In this case, Newton's laws for a rigid system of N particles, Pi, i=1,...,N, simplify 

because there is no movement in the k direction. Determine the resultant force and 

torque at a reference point R, to obtain 

 

 
 

where ri denotes the planar trajectory of each particle. 

 

Rigid body in three dimensions 

Orientation or attitude descriptions 

Several methods to describe orientations of a rigid body in three dimensions have 

been developed.  

Euler angles 

 

Euler angles, one of the possible ways to describe an orientation 

The first attempt to represent an orientation was owed to Leonhard Euler. He 

imagined three reference frames that could rotate one around the other, and 

realized that by starting with a fixed reference frame and performing three 

rotations, he could get any other reference frame in the space (using two rotations 

http://en.wikipedia.org/wiki/Leonhard_Euler
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to fix the vertical axis and other to fix the other two axes). The values of these 

three rotations are called Euler angles. 

Tait–Bryan angles 

These are three angles, also known as yaw, pitch and roll, Navigation angles and 

Cardan angles. Mathematically they constitute a set of six possibilities inside the 

twelve possible sets of Euler angles, the ordering being the one best used for 

describing the orientation of a vehicle such as an airplane. In aerospace 

engineering they are usually referred to as Euler angles. 

 

A rotation represented by an Euler axis and angle. 

Orientation vector  

Euler also realized that the composition of two rotations is equivalent to a single 

rotation about a different fixed axis (Euler's rotation theorem). Therefore the 

composition of the former three angles has to be equal to only one rotation, whose 

axis was complicated to calculate until matrices were developed. 

Based on this fact he introduced a vectorial way to describe any rotation, with a 

vector on the rotation axis and module equal to the value of the angle. Therefore 

any orientation can be represented by a rotation vector (also called Euler vector) 

that leads to it from the reference frame. When used to represent an orientation, the 

rotation vector is commonly called orientation vector, or attitude vector. 

A similar method, called axis-angle representation, describes a rotation or 

orientation using a unit vector aligned with the rotation axis, and a separate value 

to indicate the angle  

Orientation matrix 

With the introduction of matrices the Euler theorems were rewritten. The rotations 

were described by orthogonal matrices referred to as rotation matrices or direction 

cosine matrices. When used to represent an orientation, a rotation matrix is 

commonly called orientation matrix, or attitude matrix. 

The above mentioned Euler vector is the eigenvector of a rotation matrix (a 

rotation matrix has a unique real eigen value). The product of two rotation matrices 

is the composition of rotations. Therefore, as before, the orientation can be given 

as the rotation from the initial frame to achieve the frame that we want to describe. 

The configuration space of a non-symmetrical object in n-dimensional space 

is SO(n) × R
n
. Orientation may be visualized by attaching a basis of tangent 

http://en.wikipedia.org/wiki/Euler_angles
http://en.wikipedia.org/wiki/Euler%27s_rotation_theorem
http://en.wikipedia.org/wiki/Axis-angle_representation
http://en.wikipedia.org/wiki/Unit_vector
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Eigenvector
http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Configuration_space
http://en.wikipedia.org/wiki/Symmetry
http://en.wikipedia.org/wiki/Orthogonal_group
http://en.wikipedia.org/wiki/Product_topology
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Tangent_space
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vectors to an object. The direction in which each vector points determines its 

orientation. 

Orientation quaternion 

Another way to describe rotations is using rotation quaternions, also called versors. 

They are equivalent to rotation matrices and rotation vectors. With respect to 

rotation vectors, they can be more easily converted to and from matrices. When 

used to represent orientations, rotation quaternions are typically called orientation 

quaternions or attitude quaternions. 

 

Newton's second law in three dimensions 

To consider rigid body dynamics in three-dimensional space, Newton's second law 

must be extended to define the relationship between the movement of a rigid body 

and the system of forces and torques that act on it. 

Newton's formulated his second law for a particle as, "The change of motion of an 

object is proportional to the force impressed and is made in the direction of the 

straight line in which the force is impressed." Because Newton generally referred 

to mass times velocity as the "motion" of a particle, the phrase "change of motion" 

refers to the mass times acceleration of the particle, and so this law is usually 

written as 

 

where F is understood to be the only external force acting on the particle, m is 

the mass of the particle, and a is its acceleration vector. The extension of 

Newton's second law to rigid bodies is achieved by considering a rigid system 

of particles. 

D'Alembert's form of the principle of virtual work 

The equations of motion for a mechanical system of rigid bodies can be determined 

using D'Alembert's form of the principle of virtual work. The principle of virtual 

work is used to study the static equilibrium of a system of rigid bodies, however by 

introducing acceleration terms in Newton's laws this approach is generalized to 

define dynamic equilibrium. 

 

Static equilibrium 

The static equilibrium of a mechanical system rigid bodies is defined by the 

condition that the virtual work of the applied forces is zero for any virtual 

displacement of the system. This is known as the principle of virtual work. This is 

http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
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equivalent to the requirement that the generalized forces for any virtual 

displacement are zero, that is Qi=0. 

 

Let a mechanical system be constructed from n rigid bodies, Bi, i=1,...,n, and let 

the resultant of the applied forces on each body be the force-torque pairs, Fi and Ti, 

i=1,...,n. Notice that these applied forces do not include the reaction forces where 

the bodies are connected. Finally, assume that the velocity Vi and angular 

velocities ωi, i=,1...,n, for each rigid body, are defined by a single generalized 

coordinate q. Such a system of rigid bodies is said to have one degree of freedom. 

 

8.2 Rigid Body 

In physics, a rigid body is an idealization of a solid body in which deformation is 

neglected. In other words, the distance between any two given points of a rigid 

body remains constant in time regardless of external forces exerted on it. Even 

though such an object cannot physically exist due to relativity, objects can 

normally be assumed to be perfectly rigid if they are not moving near the speed of 

light. 

 

In classical mechanics a rigid body is usually considered as a continuous mass 

distribution, while in quantum mechanics a rigid body is usually thought of as a 

collection of point masses. For instance, in quantum mechanics molecules 

(consisting of the point masses: electrons and nuclei) are often seen as rigid bodies 

(see classification of molecules as rigid rotors). 

 

Linear and angular position[edit] 

The position of a rigid body is the position of all the particles of which it is 

composed. To simplify the description of this position, we exploit the property that 

the body is rigid, namely that all its particles maintain the same distance relative to 

each other. If the body is rigid, it is sufficient to describe the position of at least 

three non-collinear particles. This makes it possible to reconstruct the position of 

all the other particles, provided that their time-invariant position relative to the 

three selected particles is known. However, typically a different, mathematically 

more convenient, but equivalent approach is used. The position of the whole body 

is represented by: 

 

the linear position or position of the body, namely the position of one of the 

particles of the body, specifically chosen as a reference point (typically coinciding 

with the center of mass or centroid of the body), together with 

the angular position (also known as orientation, or attitude) of the body. 
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Thus, the position of a rigid body has two components: linear and angular, 

respectively.[2] The same is true for other kinematic and kinetic quantities 

describing the motion of a rigid body, such as linear and angular velocity, 

acceleration, momentum, impulse, and kinetic energy. 

 

The linear position can be represented by a vector with its tail at an arbitrary 

reference point in space (the origin of a chosen coordinate system) and its tip at an 

arbitrary point of interest on the rigid body, typically coinciding with its center of 

mass or centroid. This reference point may define the origin of a coordinate system 

fixed to the body. 

 

There are several ways to numerically describe the orientation of a rigid body, 

including a set of three Euler angles, a quaternion, or a direction cosine matrix 

(also referred to as a rotation matrix). All these methods actually define the 

orientation of a basis set (or coordinate system) which has a fixed orientation 

relative to the body (i.e. rotates together with the body), relative to another basis 

set (or coordinate system), from which the motion of the rigid body is observed. 

For instance, a basis set with fixed orientation relative to an airplane can be defined 

as a set of three orthogonal unit vectors b1, b2, b3, such that b1 is parallel to the 

chord line of the wing and directed forward, b2 is normal to the plane of symmetry 

and directed rightward, and b3 is given by the cross product  b_3 = b_1 \times b_2 

. 

 

In general, when a rigid body moves, both its position and orientation vary with 

time. In the kinematic sense, these changes are referred to as translation and 

rotation, respectively. Indeed, the position of a rigid body can be viewed as a 

hypothetic translation and rotation (roto-translation) of the body starting from a 

hypothetic reference position (not necessarily coinciding with a position actually 

taken by the body during its motion). 

 

Linear and angular velocity 

Velocity (also called linear velocity) and angular velocity are measured with 

respect to a frame of reference. 

 

The linear velocity of a rigid body is a vector quantity, equal to the time rate of 

change of its linear position. Thus, it is the velocity of a reference point fixed to the 

body. During purely translational motion (motion with no rotation), all points on a 

rigid body move with the same velocity. However, when motion involves rotation, 

the instantaneous velocity of any two points on the body will generally not be the 
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same. Two points of a rotating body will have the same instantaneous velocity only 

if they happen to lie on an axis parallel to the instantaneous axis of rotation. 

 

Angular velocity is a vector quantity that describes the angular speed at which the 

orientation of the rigid body is changing and the instantaneous axis about which it 

is rotating (the existence of this instantaneous axis is guaranteed by the Euler's 

rotation theorem). All points on a rigid body experience the same angular velocity 

at all times. During purely rotational motion, all points on the body change position 

except for those lying on the instantaneous axis of rotation. The relationship 

between orientation and angular velocity is not directly analogous to the 

relationship between position and velocity. Angular velocity is not the time rate of 

change of orientation, because there is no such concept as an orientation vector that 

can be differentiated to obtain the angular velocity. 

 

Kinetics 

Any point that is rigidly connected to the body can be used as reference point 

(origin of coordinate system L) to describe the linear motion of the body (the linear 

position, velocity and acceleration vectors depend on the choice). 

 

However, depending on the application, a convenient choice may be: 

 

the center of mass of the whole system, which generally has the simplest motion 

for a body moving freely in space; 

a point such that the translational motion is zero or simplified, e.g. on an axle or 

hinge, at the center of a ball and socket joint, etc. 

When the center of mass is used as reference point: 

 

The (linear) momentum is independent of the rotational motion. At any time it is 

equal to the total mass of the rigid body times the translational velocity. 

The angular momentum with respect to the center of mass is the same as without 

translation: at any time it is equal to the inertia tensor times the angular velocity. 

When the angular velocity is expressed with respect to a coordinate system 

coinciding with the principal axes of the body, each component of the angular 

momentum is a product of a moment of inertia (a principal value of the inertia 

tensor) times the corresponding component of the angular velocity; the torque is 

the inertia tensor times the angular acceleration. 

Possible motions in the absence of external forces are translation with constant 

velocity, steady rotation about a fixed principal axis, and also torque-free 

precession. 
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The net external force on the rigid body is always equal to the total mass times the 

translational acceleration (i.e., Newton's second law holds for the translational 

motion, even when the net external torque is nonzero, and/or the body rotates). 

The total kinetic energy is simply the sum of translational and rotational energy. 

 

Geometry 

Two rigid bodies are said to be different (not copies) if there is no proper rotation 

from one to the other. A rigid body is called chiral if its mirror image is different in 

that sense, i.e., if it has either no symmetry or its symmetry group contains only 

proper rotations. In the opposite case an object is called achiral: the mirror image is 

a copy, not a different object. Such an object may have a symmetry plane, but not 

necessarily: there may also be a plane of reflection with respect to which the image 

of the object is a rotated version. The latter applies for S2n, of which the case n = 1 

is inversion symmetry. 

 

For a (rigid) rectangular transparent sheet, inversion symmetry corresponds to 

having on one side an image without rotational symmetry and on the other side an 

image such that what shines through is the image at the top side, upside down. We 

can distinguish two cases: 

 

the sheet surface with the image is not symmetric - in this case the two sides are 

different, but the mirror image of the object is the same, after a rotation by 180° 

about the axis perpendicular to the mirror plane. 

the sheet surface with the image has a symmetry axis - in this case the two sides 

are the same, and the mirror image of the object is also the same, again after a 

rotation by 180° about the axis perpendicular to the mirror plane. 

A sheet with a through and through image is achiral. We can distinguish again two 

cases: 

 

the sheet surface with the image has no symmetry axis - the two sides are different 

the sheet surface with the image has a symmetry axis - the two sides are the same 

 


