
1

9. Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,

collaborative, hypermedia information systems. HTTP is the foundation of data

communication for the World Wide Web.

Hypertext is structured text that uses logical links (hyperlinks) between nodes

containing text. HTTP is the protocol to exchange or transfer hypertext.

The standards development of HTTP was coordinated by the Internet Engineering

Task Force (IETF) and the World Wide Web Consortium (W3C), culminating in the

publication of a series of Requests for Comments (RFCs), most notably RFC 2616

(June 1999), which defined HTTP/1.1, the version of HTTP most commonly used

today. In June 2014, RFC 2616 was retired and HTTP/1.1 was redefined by RFCs

7230, 7231, 7232, 7233, 7234, and 7235. HTTP/2 is currently in draft form.

9.1 Technical overview

HTTP functions as a request-response protocol in the client-server computing

model. A web browser, for example, may be the client and an application running

on a computer hosting a web site may be the server. The client submits an HTTP

request message to the server. The server, which provides resources such as HTML

files and other content, or performs other functions on behalf of the client, returns a

response message to the client. The response contains completion status information

about the request and may also contain requested content in its message body.

A web browser is an example of a user agent (UA). Other types of user agent include

the indexing software used by search providers (web crawlers), voice browsers,

mobile apps, and other software that accesses, consumes, or displays web content.

HTTP is designed to permit intermediate network elements to improve or enable

communications between clients and servers. High-traffic websites often benefit

from web cache servers that deliver content on behalf of upstream servers to improve

response time. Web browsers cache previously accessed web resources and reuse

them when possible to reduce network traffic. HTTP proxy servers at private

network boundaries can facilitate communication for clients without a globally

routable address, by relaying messages with external servers.

HTTP is an application layer protocol designed within the framework of the Internet

Protocol Suite. Its definition presumes an underlying and reliable transport layer

protocol,and Transmission Control Protocol (TCP) is commonly used. However

2

HTTP can use unreliable protocols such as the User Datagram Protocol (UDP), for

example in Simple Service Discovery Protocol (SSDP).

HTTP resources are identified and located on the network by Uniform Resource

Identifiers (URIs)—or, more specifically, Uniform Resource Locators (URLs)—

using the http or https URI schemes. URIs and hyperlinks in Hypertext Markup

Language (HTML) documents form webs of inter-linked hypertext documents.

HTTP/1.1 is a revision of the original HTTP (HTTP/1.0). In HTTP/1.0 a separate

connection to the same server is made for every resource request. HTTP/1.1 can

reuse a connection multiple times to download images, scripts, stylesheets, etc after

the page has been delivered. HTTP/1.1 communications therefore experience less

latency as the establishment of TCP connections presents considerable overhead.

9.2 History

The term HyperText was coined by Ted Nelson in 1965 in the Xanadu Project, which

was in turn inspired by Vannevar Bush's vision (1930's) of the microfilm-based

information retrieval and management "memex" system described in his essay As

We May Think (1945). Tim Berners-Lee and his team are credited with inventing

the original HTTP along with HTML and the associated technology for a web server

and a text-based web browser. Berners-Lee first proposed the "WorldWideWeb"

project in 1989 — now known as the World Wide Web. The first version of the

protocol had only one method, namely GET, which would request a page from a

server. The response from the server was always an HTML page.

The first documented version of HTTP was HTTP V0.9 (1991). Dave Raggett led

the HTTP Working Group (HTTP WG) in 1995 and wanted to expand the protocol

with extended operations, extended negotiation, richer meta-information, tied with

a security protocol which became more efficient by adding additional methods and

header fields. RFC 1945 officially introduced and recognized HTTP V1.0 in 1996.

The HTTP WG planned to publish new standards in December 1995[8] and the

support for pre-standard HTTP/1.1 based on the then developing RFC 2068 (called

HTTP-NG) was rapidly adopted by the major browser developers in early 1996. By

March 1996, pre-standard HTTP/1.1 was supported in Arena, Netscape 2.0,

Netscape Navigator Gold 2.01, Mosaic 2.7, Lynx 2.5, and in Internet Explorer 2.0.

End-user adoption of the new browsers was rapid. In March 1996, one web hosting

company reported that over 40% of browsers in use on the Internet were HTTP 1.1

compliant. That same web hosting company reported that by June 1996, 65% of all

3

browsers accessing their servers were HTTP/1.1 compliant. The HTTP/1.1 standard

as defined in RFC 2068 was officially released in January 1997. Improvements and

updates to the HTTP/1.1 standard were released under RFC 2616 in June 1999.

In 2007, the HTTPbis Working Group was formed, in part, to revise and clarify the

HTTP/1.1 spec. In June 2014, the WG released an updated six-part specification

obsoleting RFC 2616:

RFC 7230 - HTTP/1.1: Message Syntax and Routing

RFC 7231 - HTTP/1.1: Semantics and Content

RFC 7232 - HTTP/1.1: Conditional Requests

RFC 7233 - HTTP/1.1: Range Requests

RFC 7234 - HTTP/1.1: Caching

RFC 7235 - HTTP/1.1: Authentication

9.3 HTTP session

An HTTP session is a sequence of network request-response transactions. An HTTP

client initiates a request by establishing a Transmission Control Protocol (TCP)

connection to a particular port on a server (typically port 80, occasionally port 8080;

see List of TCP and UDP port numbers). An HTTP server listening on that port waits

for a client's request message. Upon receiving the request, the server sends back a

status line, such as "HTTP/1.1 200 OK", and a message of its own. The body of this

message is typically the requested resource, although an error message or other

information may also be returned.

9.4 Request methods

An HTTP 1.1 request made using telnet. The request message, response header

section, and response body are highlighted.

HTTP defines methods (sometimes referred to as verbs) to indicate the desired action

to be performed on the identified resource. What this resource represents, whether

pre-existing data or data that is generated dynamically, depends on the

implementation of the server. Often, the resource corresponds to a file or the output

of an executable residing on the server. The HTTP/1.0 specification defined the

GET, POST and HEAD methods and the HTTP/1.1 specification added 5 new

methods: OPTIONS, PUT, DELETE, TRACE and CONNECT. By being specified

4

in these documents their semantics are well known and can be depended upon. Any

client can use any method and the server can be configured to support any

combination of methods. If a method is unknown to an intermediate it will be treated

as an unsafe and non-idempotent method. There is no limit to the number of methods

that can be defined and this allows for future methods to be specified without

breaking existing infrastructure. For example, WebDAV defined 7 new methods and

RFC 5789 specified the PATCH method.

GET

Requests a representation of the specified resource. Requests using GET should only

retrieve data and should have no other effect. (This is also true of some other HTTP

methods.) The W3C has published guidance principles on this distinction, saying,

"Web application design should be informed by the above principles, but also by the

relevant limitations." See safe methods below.

HEAD

Asks for the response identical to the one that would correspond to a GET request,

but without the response body. This is useful for retrieving meta-information written

in response headers, without having to transport the entire content.

POST

Requests that the server accept the entity enclosed in the request as a new

subordinate of the web resource identified by the URI. The data POSTed might be,

for example, an annotation for existing resources; a message for a bulletin board,

newsgroup, mailing list, or comment thread; a block of data that is the result of

submitting a web form to a data-handling process; or an item to add to a database.

PUT

Requests that the enclosed entity be stored under the supplied URI. If the URI refers

to an already existing resource, it is modified; if the URI does not point to an existing

resource, then the server can create the resource with that URI.

DELETE

Deletes the specified resource.

5

TRACE

Echoes back the received request so that a client can see what (if any) changes or

additions have been made by intermediate servers.

OPTIONS

Returns the HTTP methods that the server supports for the specified URL. This can

be used to check the functionality of a web server by requesting '*' instead of a

specific resource.

CONNECT

Converts the request connection to a transparent TCP/IP tunnel, usually to facilitate

SSL-encrypted communication (HTTPS) through an unencrypted HTTP proxy. See

HTTP CONNECT Tunneling.

PATCH

Applies partial modifications to a resource.

HTTP servers are required to implement at least the GET and HEAD methods and,

whenever possible, also the OPTIONS method.

9.5 Safe methods

Some of the methods (for example, HEAD, GET, OPTIONS and TRACE) are, by

convention, defined as safe, which means they are intended only for information

retrieval and should not change the state of the server. In other words, they should

not have side effects, beyond relatively harmless effects such as logging, caching,

the serving of banner advertisements or incrementing a web counter. Making

arbitrary GET requests without regard to the context of the application's state should

therefore be considered safe. However, this is not mandated by the standard, and it's

explicitly acknowledged that it's impossible to guarantee such a thing.

By contrast, methods such as POST, PUT, DELETE and PATCH are intended for

actions that may cause side effects either on the server, or external side effects such

as financial transactions or transmission of email. Such methods are therefore not

usually used by conforming web robots or web crawlers; some that do not conform

tend to make requests without regard to context or consequences. Despite the

prescribed safety of GET requests, in practice their handling by the server is not

technically limited in any way. Therefore, careless or deliberate programming can

cause non-trivial changes on the server. This is discouraged, because it can cause

6

problems for web caching, search engines and other automated agents, which can

make unintended changes on the server.

9.6 Idempotent methods and web applications

Methods PUT and DELETE are defined to be idempotent, meaning that multiple

identical requests should have the same effect as a single request (note that

idempotence refers to the state of the system after the request has completed, so

while the action the server takes (e.g. deleting a record) or the response code it

returns may be different on subsequent requests, the system state will be the same

every time). Methods GET, HEAD, OPTIONS and TRACE, being prescribed as

safe, should also be idempotent, as HTTP is a stateless protocol. In contrast, the

POST method is not necessarily idempotent, and therefore sending an identical

POST request multiple times may further affect state or cause further side effects

(such as financial transactions). In some cases this may be desirable, but in other

cases this could be due to an accident, such as when a user does not realize that their

action will result in sending another request, or they did not receive adequate

feedback that their first request was successful. While web browsers may show alert

dialog boxes to warn users in some cases where reloading a page may re-submit a

POST request, it is generally up to the web application to handle cases where a POST

request should not be submitted more than once. Note that whether a method is

idempotent is not enforced by the protocol or web server. It is perfectly possible to

write a web application in which (for example) a database insert or other non-

idempotent action is triggered by a GET or other request. Ignoring this

recommendation, however, may result in undesirable consequences, if a user agent

assumes that repeating the same request is safe when it isn't.

9.7 Security

Implementing methods such as TRACE, TRACK and DEBUG are considered

potentially insecure by some security professionals because attackers can use them

to gather information or bypass security controls during attacks. Security software

tools such as Tenable Nessus and Microsoft UrlScan Security Tool report on the

presence of these methods as being security issues. TRACK and DEBUG are not

valid HTTP 1.1 verbs.

7

9.8 Status codes

In HTTP/1.0 and since, the first line of the HTTP response is called the status line

and includes a numeric status code (such as "404") and a textual reason phrase (such

as "Not Found"). The way the user agent handles the response primarily depends on

the code and secondarily on the other response header fields. Custom status codes

can be used since, if the user agent encounters a code it does not recognize, it can

use the first digit of the code to determine the general class of the response.

Also, the standard reason phrases are only recommendations and can be replaced

with "local equivalents" at the web developer's discretion. If the status code indicated

a problem, the user agent might display the reason phrase to the user to provide

further information about the nature of the problem. The standard also allows the

user agent to attempt to interpret the reason phrase, though this might be unwise

since the standard explicitly specifies that status codes are machine-readable and

reason phrases are human-readable. HTTP status code is primarily divided into five

groups for better explanation of request and responses between client and server as

named: Informational 1XX, Successful 2XX, Redirection 3XX, Client Error 4XX

and Server Error 5XX.

9.9 Persistent connections

In HTTP/0.9 and 1.0, the connection is closed after a single request/response pair.

In HTTP/1.1 a keep-alive-mechanism was introduced, where a connection could be

reused for more than one request. Such persistent connections reduce request latency

perceptibly, because the client does not need to re-negotiate the TCP 3-Way-

Handshake connection after the first request has been sent. Another positive side

effect is that in general the connection becomes faster with time due to TCP's slow-

start-mechanism.

Version 1.1 of the protocol also made bandwidth optimization improvements to

HTTP/1.0. For example, HTTP/1.1 introduced chunked transfer encoding to allow

content on persistent connections to be streamed rather than buffered. HTTP

pipelining further reduces lag time, allowing clients to send multiple requests before

waiting for each response. Another improvement to the protocol was byte serving,

where a server transmits just the portion of a resource explicitly requested by a client.

8

9.10 HTTP session state

HTTP is a stateless protocol. A stateless protocol does not require the HTTP server

to retain information or status about each user for the duration of multiple requests.

However, some web applications implement states or server side sessions using for

instance HTTP cookies or Hidden variables within web forms.

9.11 Encrypted connections

The most popular way of establishing an encrypted HTTP connection is HTTP

Secure.

Two other methods for establishing an encrypted HTTP connection also exist, called

Secure Hypertext Transfer Protocol and the HTTP/1.1 Upgrade header. Browser

support for these latter two is, however, nearly non-existent;[citation needed] so

HTTP Secure is the dominant method of establishing an encrypted HTTP

connection.

9.12 Request message

The request message consists of the following:

A request line, for example GET /images/logo.png HTTP/1.1, which requests a

resource called /images/logo.png from the server.

Request header fields, such as Accept-Language: en

An empty line.

An optional message body.

The request line and other header fields must each end with <CR><LF> (that is, a

carriage return character followed by a line feed character). The empty line must

consist of only <CR><LF> and no other whitespace. In the HTTP/1.1 protocol, all

header fields except Host are optional.

A request line containing only the path name is accepted by servers to maintain

compatibility with HTTP clients before the HTTP/1.0 specification in RFC 1945.

9

9.13 Response message

The response message consists of the following:

A Status-Line, which include the status code and reason message. (e.g., HTTP/1.1

200 OK, which indicates that the client's request succeeded)

Response header fields, such as Content-Type: text/html

An empty line

An optional message body

The Status-Line and other header fields must all end with <CR><LF> (a carriage

return followed by a line feed). The empty line must consist of only <CR><LF> and

no other whitespace.

9.14 Example session

Below is a sample conversation between an HTTP client and an HTTP server

running on www.example.com, port 80.

9.15 Client request

GET /index.html HTTP/1.1

Host: www.example.com

A client request (consisting in this case of the request line and only one header field)

is followed by a blank line, so that the request ends with a double newline, each in

the form of a carriage return followed by a line feed. The "Host" field distinguishes

between various DNS names sharing a single IP address, allowing name-based

virtual hosting. While optional in HTTP/1.0, it is mandatory in HTTP/1.1.

9.15 Server response

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

ETag: "3f80f-1b6-3e1cb03b"

Content-Type: text/html; charset=UTF-8

10

Content-Length: 131

Accept-Ranges: bytes

Connection: close

<html>

<head>

 <title>An Example Page</title>

</head>

<body>

 Hello World, this is a very simple HTML document.

</body>

</html>

The ETag (entity tag) header field is used to determine if a cached version of the

requested resource is identical to the current version of the resource on the server.

Content-Type specifies the Internet media type of the data conveyed by the HTTP

message, while Content-Length indicates its length in bytes. The HTTP/1.1

webserver publishes its ability to respond to requests for certain byte ranges of the

document by setting the field Accept-Ranges: bytes. This is useful, if the client needs

to have only certain portions[26] of a resource sent by the server, which is called

byte serving. When Connection: close is sent, it means that the web server will close

the TCP connection immediately after the transfer of this response.

Most of the header lines are optional. When Content-Length is missing the length is

determined in other ways. Chunked transfer encoding uses a chunk size of 0 to mark

the end of the content. Identity encoding without Content-Length reads content until

the socket is closed.

A Content-Encoding like gzip can be used to compress the transmitted data.

9.16 Similar protocols

The Gopher protocol was a content delivery protocol that was displaced by HTTP

in the early 1990s. The new protocol SPDY is also similar to HTTP, modifying the

request-response interaction between client and server.

